Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes.
نویسندگان
چکیده
The position of a mono-oriented chromosome changes as it oscillates to and from the pole to which it is attached. Such oscillatory behavior reveals that the net force on a mono-oriented chromosome is constantly changing. Fluctuations may occur in both the polewardly directed force acting at the kinetochore and the opposing outwardly directed force associated with the aster. We have examined the ejection properties of the aster--as well as the oscillatory behavior and positioning of mono-oriented chromosomes--in relation to astral microtubule turnover. We treated cells containing monopolar spindles with drugs that affect microtubule turnover, either by promoting the depletion of dynamically unstable astral microtubules (nocodazole and colcemid) or by augmenting their numbers and stability (taxol). Both types of drugs stopped the oscillatory behavior of mono-oriented chromosomes within seconds. The final position of the chromosomes depended on how microtubule turnover was affected. In the case of nocodazole and colcemid, non-kinetochore astral microtubules were depleted first and the kinetochore-to-pole distance shortened. In these cells chromosome fragments generated by laser microsurgery were no longer expelled from the center of the aster. By contrast, with taxol the number of non-kinetochore microtubules increased and the astral ejection force became stronger as shown by the finding that the chromosomes moved away from the pole to the periphery of the monaster. Moreover, arms severed from chromosomes at the periphery of the taxol monaster failed to move further away from the aster's center. From these observations we conclude that the oscillatory movements and changing position of a mono-oriented chromosome relative to the pole are mediated by changes in the number of astral microtubules. The dynamic instability of astral microtubules that leads to a rapid turnover may contribute to the astral ejection force by allowing the continual growth of microtubules out from the aster. Growing astral microtubules may exert a pushing force that their rigidity maintains until their depolymerization.
منابع مشابه
Myosin II-Dependent Cortical Movement Is Required for Centrosome Separation and Positioning during Mitotic Spindle Assembly
The role of myosin II in mitosis is generally thought to be restricted to cytokinesis. We present surprising new evidence that cortical myosin II is also required for spindle assembly in cells. Drug- or RNAi-mediated disruption of myosin II in cells interferes with normal spindle assembly and positioning. Time-lapse movies reveal that these treatments block the separation and positioning of dup...
متن کاملHrs1p/Mcp6p on the Meiotic SPB Organizes Astral Microtubule Arrays for Oscillatory Nuclear Movement
Microtubules and the motor protein dynein play pivotal roles in the movement and positioning of the nucleus and cytoplasmic organelles in a cell. In fission yeast, oscillatory movement of the nucleus termed horsetail nuclear movement (HNM) has been observed during meiotic prophase. HNM is led by an astral microtubule array emanating from the spindle pole body (SPB), a centrosome-equivalent orga...
متن کاملRole of microtubules in stimulating cytokinesis in animal cells.
The initiation of furrow formation is disrupted when microtubule elongation to the cell surface is inhibited either by promoting microtubule disassembly with hydrostatic pressure or by stabilizing the mitotic astral microtubules with taxol. The pressure studies confirmed Rappaport's earlier observation that stimulation of furrow formation is produced by a pair of asters and does not require chr...
متن کاملPolar Ejection Forces Promote the Conversion from Lateral to End-on Kinetochore-Microtubule Attachments on Mono-oriented Chromosomes
Chromosome bi-orientation occurs after conversion of initial lateral attachments between kinetochores and spindle microtubules into stable end-on attachments near the cell equator. After bi-orientation, chromosomes experience tension from spindle forces, which plays a key role in the stabilization of correct kinetochore-microtubule attachments. However, how end-on kinetochore-microtubule attach...
متن کاملMicrotubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression.
We have proposed previously a kinetochore motor-polar ejection model for chromosome congression to the metaphase plate where forces generated at the kinetochore are antagonized by away-from-the pole forces generated within each half-spindle on the chromosome arms. This model was based in large part on observations of the behavior of chromosomes on monopolar spindles. In these cells chromosomes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 99 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1991